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AN ACCURACY STUDY OF CENTRAL FINITE DIFFERENCE METHODS
IN SECOND ORDER BOUNDARY VALUE PROBLEMS

By

Nancy Jane Cyrus

ABSTRACT ; 475 é

An accuracy study is made of central finite difference methods
for solving boundary value problems which are governed by second
order differential equations with variable coefficients leading to
odd order derivatives. Three methods are studied through applications
to selected problems. Definitive expressions for the error in each
method are obtained by using Taylor series to derive the differential
equations which exactly represent the finite difference approximations.
The resulting differential equations are accurafely solved by a
perturbation technique which yields the error directly. A half
station method, which corresponds to making finite difference
approximations before expanding derivatives of function products in the

differential equations, was found superlor to two whole station methods

ﬁMa s

which correspond to expanding such products first.
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IV. INTRODUCTION

In the mathematical analysis of many physical boundary value
problems, such as beams, plates and shells in structural anaslysis,
the governing differential equations are often solved by approximating
the derivatives by finite differences and solving the resulting system
of algebraic eguations on a digital computer. In the analysis of
complicated structures the number of simultaneous equations resulting
from finite differences may be large enough to exceed the capacity of
the computer or to introduce round-off error in obtaining a numerical
solution. For such problems, it is important to keep the number of
algebraic equations at a iminimum and the accuracy of the difference
procedure can be a critical item in obtaining meaningful results. 1In
reference 2, for example, it was found that accurate answers for the
stresses in a shell structure could not be obtained by using certain
finite difference approximations uniess the mesh spacing was smaller
than machine capacity permitted.

The most popular difference approximations used in boundary value
problems are the central difference approximations which are given in
textbooks on numerical methods. There are alternate formulations of
central differences which can be used when odd order derivatives occur
in the differential equation and these alternate formulations give
different answers. It was shown in reference 14 that for a circular
plate symmetrically loaded, approximating the differential equation
by central differences led to a nonsymmetric matrix instead of the

expected symmetric matrix. Furthermore, the answers in no way
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resembled the known solutions to the problem and the central difference
equation was singular at the center of the plate, a physically real
point in the problem.

The purpose of this paper is to investigate the accuracy of the
three alternate forms cof central finite difference approximations as
applied to boundary value problems. An approach for studying the
accuracy of finite difference methods is presented and utilized. The
study is confined to linear second order boundary value problems of a
certain type but the approach and conclusions are applicable to a wide

class of boundary value problems.
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V. General Discussion of Error

Types of Error

The use of finite difference approximation formulas to obtain
numerical solutions to differential equations leads to errors which
can be classified as three types: (1) round-off error, (2) inherited
error, and (3) truncation or discretization error. Round-off error
is a calculation error resulting from using a finite number specified
by n correct digits to approximate a number which requires more than
n digits for its exact specification. Round-off error increases with
the number of calculations required to get an answer. The inherited
error is the contribution to the error due to the total error at a
preceding step. This may result from using a step~-by-step procedure
in which each step uses the result from the previous step.

Truncation error, or discretization error as it is sometimes
called, comes from approximating or replacing the continuocus problem
by a discrete model. Discretization error is decreased by using
smaller increments; but as increment size decreases, the number of
steps taken increases, calculations increase, and the danger that
round-off error will build up to substantial proportions grows. In
any problem that is short enough to permit hand computation, it is
usually possible to carry enough places so that round-off error can
be neglected. 1In extended computations using computing machines
round-off error can be serious.

All three types of error can occur when a boundary value differ-

ential equation is solved by reducing it to an initial value problem
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and then solving it by one of the step-by-step procedures for initial
value problems (ref. 10). If a boundary value problem is sclved by
replacing the differential equation by central difference equations,
taking into account the boundary conditions at both ends, and thus
obtaining a set of simultaneous algebraic egquations, inherited error
does not exist as a separate entity. For such problems round-off and
truncation error are the only separable effects. Round-off error,
while it can be important in a practical problem utilizing large

numbers of simultaneous equations, is not considered here.

Literature Survey

Numerous studies have been reported in the literature dealing
with errors resulting from the use of numerical methods to approximate
the solutions to linear and nonlinear ordinary and partial differential
equations governing boundary value problems. A common way to solve a
boundary value problem approximately is to reformulate the problem as
an initial value problem and solve it using numerical integration.
Consequently most of the error studies in the literature deal with
initial value problems. However, some comments on a few important
papers and books which do treat errors in boundary value problems are
given here.

Collatz (ref. 3) gives methods for solving boundary value
problems directly and for obtaining estimates of the discretization
error. This is accomplished by first expanding the difference

equations in Taylor series, then deriving a system of equations for
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the errors, estimating higher order derivatives in some way and then
solving the system of error equations to obtain error bounds.

In Modern Computational Methods, reference 13, a difference
correction is added to the central difference approximations for the
derivatives. A first approximation sclution to the resulting system is
obtained by neglecting the difference correction and solving the
resulting algebraic equations. Then considering the difference
correction a successive correction method is used to obtain corrections
to the first approximation solution. The process is continued until
there is no change in the numerical solution.

Many methods of error analysis of boundary value problems in
partial differential equations are also applicable to ordinary differ-
ential equations. In the eclassic method developed by Gerschgorin
(ref. 6), the discretization error is estimated by the use of a special
method which he calls the majorant method. This method is alsc
discussed by Collatz (ref. 3) and Forsythe and Wasow (ref. 5).
Roudebush (ref. 15) uses an error analysis of the Gerschgorin type to
show that the order of discretization error in ordinary differential
equations and parabolic and elliptic partial differential equations is
unaffected by a finite number of discontinuities in the coefficients
of the differential equation. In this paper he derives some higher
order finite difference approximations and shows that when these
approximations are used the order of the discretization error is

improved.
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Bramble and Hubbard (ref. 1) have included the work of
Gerschgorin (ref. 6) and Collatz (ref. 3) as special cases in their
theorem for estimating error in the Dirchlet problem for elliptic
equations.

In many studies of physical problems approximate methods are
Judged with the knowledge of what the correct solution should be. 1In
Chuang and Veletsos (ref. 2), for example, two finite difference
methods are used to obtain approximate solutions to the partial
differential equations governing the deformation of cylindrical shell
structures. One method gives results which are unacceptable, even as
design data, while the other method gives a satisfactory solution.

Round-off error resulting from the solution of tridiagonal
matrices, which result from the use of central difference methods
in some boundary value problems, is not the concern in the present
paper but has been treated tc some extent in the literature. Von
Neumann and Goldstine (ref. 19) establish an error bounds for which
solutions by the elimination method is valid. Turing (ref. 18)
discusses different matrix methods and gives round-off errors for the
Jordan, Gauss and Choleski methods. Wilkinson (ref. 20) also gives
estimates of round-off error in matrix solutions, while Lowan (ref. 11)

deals specifically with tridiagonal matrices.
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Vi. DEVELOPMENT OF FINITE DIFFERENCE OPERATORS

Finite difference operators can be obtained by several metheods.
Three common procedures are given and used to derive the difference

approximations investigated in the study.

Polynomial Approximation

One method of obtaining approximate values for the derivatives of
a function which is known at a discrete number of points consists of
fitting the given points with an appropriate polynomial, whose
derivatives are then obtained. Referring to figure 1 the problem is
to find the derivatives of the function which passes through the
given points (xo, yo), (xl, yi) ... (xn, yn). Values of the
function are known at these points or stations.

Lagrange's interpolation formuls can be specialized to fit a
polynomial through a certain number of points. Let there be given
values of the ordinates Yo» ¥, © * =¥, of the function y = £{x)
at the (n + 1) points X 5 X}, * + + x . The polynomial of the

nth degree through these pcints may be written in the form

oy G () )
(o~ 2)(% - %) -t (% - %)

(x- %) (x-=) - - - (x-x)
(%) (2 %) - (2 )

(%)

+
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'(x - X )- .(x - xi_l)(x - X +l)+ .(x - x| ey
(%= %) (% B (7 Ka) (M7 %) 1)

<+

(x - xo> (x - x1>.......gx - xn—l)

(xn - xo) (xn - x1) f(x )

(xn - X 1) n,

(6.1)

The equation for a polynomial passing through three points

separated by equal increments h and with the origin at x = xo is

obtained from equation (6.1)

2
X X
y(x) = .Vo + éﬁ ("3}’0 + hyl - ye) + 2h2 (YO - Eyl + Y2)
(6.2)
The first derivative of the function is
1 b 4
t o — - - — -
y ) = g (v, + by vp) * 2 (vo -2y V)
(6.3)
The slope at each of the points X, is obtained by substituting
x=%x =0, x=x =h, Xx=2x, =2h in equation (6.3). The second

2

derivative of the curve y(x) is
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y'(x) = % (yo -2y, +¥,) (6.4)
. .

which is constant because y{(x) 1is a second degree curve.

Polynomials passing through four points and five points can be
obtained in a similar fashion and their derivatives evaluated at each
point to obtain various difference patterns. Thus, numerous choices
are available when selecting a difference pattern. Which pattern is
best depends to a large extent on the eguation to be solved and its
boundary conditions. However, one set of central difference operators
is usually suggested in textbooks (refs. 4, 10, and 16), widely used
in the literature (refs. 2, 12, and 14), and generally accepted as
preferred because of simplicity, ease with which boundary conditions

are handled, and consistency of order of error. These are given in

equations (6.5) to (6.8)

v'(%) = 5 (Y1 * Vi) (6.5)
' x = L - 2y, + V. (6.6)
(%1) 2 (Y1 - 3 Vi)

111 1 .
Yo%) - o ('yi-e tAyy ) F 0 - Ay tY) (64D

e
H
<

-
e
K
0
=

(yi-2 S P IT FE I yi+2) (6.8)
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The simplicity of the selected operators equations (6.5) to (6.8)
compared with writing at each station equations (6.3), (6.4), or those
obtained from polynomials through four or five points (see ref. 16),
to obtain the various difference operators is obvious. The order of
‘‘‘‘‘‘ un i h operator may Le obtained by expanding

the function y(xi) about the point X5 in Taylor series as given

below
n
(an)? (an)
y(xi + ah) = y(x Y+ ah y'(xi) + Z? y"(xl) + o . .+ i?' n(xl)
s} ‘\n
_ Zi—-i?’ ¥ (%) (6.9)
n=0 )
n
where yn stands for the derivative g—%, a 1s any real number and
dx

h is the increment of the interval. For example, equation (6.5)

which is (6.3) evaluated at the center, can be expanded as follows

] I S 111 n' v, 0 v, |
Yiop =Yy vy - Ty Yy o Y1 T 100 Y1
2 93 411 Bt av B v

h 1 iii
1 — ————— -
el TV Tty oYy tigo Yyt

9"
1

3 ... 5
' 2h iii 2h v
Vi YV =0Ty 0+ Tyt O+ T5a Y

1 h2 iii hu v

- ‘ Ll L4
5 (Y1 Vie) Vit YL Ytz Vit
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. . 2 .
The truncation error is of order n and is

~ i

HY
h- 111 h
Tttt (6.20)

For the first difference, equation (6.3) evaluated at the left end

point leads to

and the truncation error is

2 ... 3,
h™ 4ii h’ _div 7 4 v
T3 Y T F Yy cgoh Vit (6.11)
The second difference, equation (6.4) evaluated at the center point,

is equation (6.6). It yields a truncation error of

N i

iv . h vi
15 yi + 335 yi + (6.12)
The second difference, equation (6.4) evaluated at the left end point
gives the truncation error
iii 7h2 iv 3

hy +-=—y, +h

v
1 5 i Y5 + . . (6.13)

Note from equations (6.10) to (6.13) that while the error for
both first difference operators is of order h2, the error for the

second difference operator about an end point is of order h, and
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about the center point, of order h2. Generally, difference patterns
with the same order of error are used for more consistent results.

For example, one of the first difference patterns {error of order h2),
is not mixed with the second difference pattern at the end point
(error of order h). When inconsistent order of error terms are used,

the answers tend toward the more inaccurate terms (ref. 16).

Difference Operations
A second method for obtaining the various finite difference

operators is differencing differences. The inverted delta, V,
designates backward differences, the normal delta, A, forward
differences and the lower case delta, 5, central differences. Suppose
the values fi = f(xi) of a function f(x) are known at (o + 1)
equidistant points X =a +1ih vhere 1=0,1,2, ---n
(sometimes i is nonintegral). On the interval (a, b) h is the
increment hﬁg and is taken to be positive. For any function f(x)

the difference operators A, V, & are defined for increment h as

follows

Af, = - £, (6.14)

y
1l
Hy
1
Hy

(6.15)°

&f, = f - f (6.16)



- 17 -

The differences in equations (6.14) to (6.15) may be extended to

higher order differences by taking the difference of the difference;

for example
22 e AlAe) =Alf . - £ 2 £ - 2f 4%
i Vi) tal i) it+2 i+l i
(6.17)
In general
P _ p-1 _ -1 P p-1 . )
IS e I R A 5P = 5(sP™ 1, )
p=1, 2" :
(6.18)
for p=20
o o)
A fi=v°fi=6 £,o= 1 (6.19)

Given in equations (6.20a) to (6.22e) are the finite difference

operators that approximate the various order derivatives (including

zero order). Also included are the operators expanded in Taylor series

to obtain truncation error terms.
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Forward and backward differences give unilateral expressions for
the derivatives of a function y(xi), which in their simplest form
have errors of order h. Central differences, involving pivotal

points or stations symmetrically located with respect to x,, are

i’
particularly useful in the solution of boundary value problems,
reference 3. Note that the order of error for the central difference
operators is h2. Generally, as h spproaches zero the central
differences approach the exact value faster than forward or backward
differences.

The central difference operators (6.22a) to (6.22e) are defined
at half stations for odd derivatives. These operators are regular
and consistent and may be used successfully in boundary value

problems. They will be referred to as "half station" operators.

The linear second order differential equation in the form

L(y) = a, (x)y" + &) (x)y' +a, (x)y = b(x) (6.23)

cannot be approximated by the half station operators because the

approximation for second derivative introduces unknowns Yiq, ¥y»
2

and the epproximatian for first derivative introduces unknowns
Yia1

y 157 . This gives too many unknowns for the number of

. .1
o +—
i 1

equations. However, equation (6.23) may be reduced to the form

L(y) = [2(x)y7] + ax)y = p(x) (6.24)
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by multiplying by

/Ax al (X) dx
J a (x)
e Yo ©
a_ (x)
Then
~X a rx 8y ~X
/ 1 [ — dx / al
o Jx w &
Jx % a, e O Yx o
P -e O _ 2 _ € "o b
- &= a b= a
o o)

Equation (6.34) can be solved by using half station operators.

Averaging Procedure
The central difference operators (6.5) to (6.8) which were
obtained from Lagrange's interpolation formula, and which do not have
half stations in the approximations for odd order derivatives, can be
obtained by averaging difference operators. The first averaged or
mean difference at i 1s obtained by taking the average of the first
central difference at i-%- and i+% . The cperation is symbolized

by the operator u called the averager. The first averaged

difference is

it
PO
(o4
>3]

11 1
ud yy =3|n (‘yi-l + yi) *q ('yi * y1+1)

(6.25)

|
!\)II—-‘
=2
| 1
e
[
]
]
+
&
[ N
-+
L=
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Similarly the next averaged difference is

1

3 1 s3 3 1

Wo” s =S|V ROV == T Vo A gt Vg T Yo
i--2- 1+§ 2h

Since the averaged central difference operators are defined only at
integral polnts, that is at whole stations, they shall be referred
to as "whole station" operators.

Expanding the whole station operators in a Taylor series to
obtain the first two truncation error terms results in the

following

Derivative Finite difference pattern Taylor series expansion

Vi Vi1 I3 Jisr Yi42

v, =1 1 ) =y; *+0 (a)
o= 1 1 oyl AL )
i T on ) o - =¥y 6 Yy

2
" ~l _ " _kl_ iv .
yi ~;2— ( 1 -2 1 ) = yi + 12 yi + - . (C)
i _ 1 (1 o 51 ﬁi+h2v+__”_(d)
i ~_—5(' o - =Yy T Y3

2h

2
iv. 1 Ay h vi ...
v; N;E ( 1 -k 6 -k 1) =y; +tgvy o+ (e)

(6.26)

This study is concerned with determining and comparing the
accuracy of the two central difference methods both with order of

error h2, the half and whole station methods. Also a modified form
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of the whole station method, in which all derivatives occurring in

the given equation L(y) are approximated, is considered.
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VII. A Method for Determining the Accuracy of the

- Central Finite Difference Equations

To study the accuracy of the half station and whole station

methods in second order boundary value problems, the simple problem

L(y) = - (fy')+ &y = p(x) (7.1)
with boundary conditions

y(a) =y, y(b) =y,

on the interval {a,b) is considered.

i With h = Eié and X, =8 + ih the finite difference method,

applying operator equation (6.16) to equation (7.1), and noting that
' 1 ,
! - =1 [ '
()5 =% [; (257) 1t ) 1j}
2

1 1
-3 -t lﬁ('yi-l+y1)+f

1
13 A3

yields

1. Helf Station Method

1
-\ .y - (f + f ) vy, + T Ng + 8.y, -p, =0
2 171i-1 . 1 gl i 1 i+l i'i i
h 1-2 ( 1-35 1+§ i+§
- (7.2)
Yo =V, Y, = % (t=1,2, - n - 1)
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Using the expanded form of equation (7.1),

y) = - £'y" - fy' + gy = p(x) (7.3)

and the operators in equations (6.5), (6.6), the difference equation

for (7.1) takes the form

2a. Whole Station Method

N hf? he!
3 3
"2 (%1 -3 ) Yip - ef vy ¢ (%1 3 ) Yie1 | T 8Yy - Py =0

(7.%)

y =Y y=yb (i=1:2;"'n"l)

The derivative fi in equation (7.4) can be evaluated exactly at

the appropriate stations. Another method which can be considered is
1

to approximate f, by equation (6.26b). The result is

2b. Modified Whole Station Method

1 i1 Y g
T2\ n Vi - 2Ty ¥y
Y
1-1 ¥ Y
At n Yiep| ¥ 83Y; - Py = O (7.5)
Yo =Y, Y, = ¥p (1i=1,2, """ n-~1)
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Note that the three sets of finite difference equations, (7.2),
(7.4), and (7.5), lead to different coefficients for the simultaneous
equations in terms of the same displacements v at the ith station.
With a few assumptions the existence and uniqueness of the solution of
each of the sets of simul taneous eguations is established from a
theorem proved by Collatz and stated in appendix A.

If it is assumed that f(x) > 0 and g{x) 2 0, the systems of
equations (7.2) and (7.5) satisfy the conditions of Theorem Al (in
addition to the sign distribution, the weak row sum criterion is
satisfied and the matrix of coefficients is irreducible); hence, a
uniquely determined solution exists for each system for arbitrary

boundary conditions and arbitrary values of P - For the set of

equations (7.4) the additional assumption that for

£'(x) 4 0, h < =

2fl
satisfies the conditions.

The usual approach in a finite difference accuracy study
(ref. 12) is to carry out the numerical solution to a number of
problems for which the exact solutions can be obtained and compare
the resulting numerical answers with the exact answers. This
procedure was carried out for a number of problems of the type of
equation (7.1) and a table of relative error for a typical result is

given in appendix B. BSuch a procedure has the liability that cal-

culations must be redone each time the increment size, h, changes.
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The root mean sguare of relative error for three different values of
the increment h for problems solved is given 1n appendix B.

Conventional means for estimating the error bounds do not give a
satisfactory means of comparison of the different methods since the
error limite exceed the actual error in magnitude,

To obtain definitive expressions for error in each method,
independent of increment h, first expand the finite difference
recursion equations (7.2), (7.4), and (7.5) in a Taylor series
expansion about the ith point. For each method this leads to a
differential equation of the form

L, (yi) -p; ¥ n° Ll(yi) + h)“ Le(yi) +...=0 (7.6)

subject to the boundary conditions
y. = y at X = a
Yi = yb at X =D

The symbols L0, Ll’ and L2 are linear differential operators given

by

and

1. Half Station Method
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iv iii T iii
f! £ T, :
Ly} = - Yy e LE S S B
() = -3 Z 5 N
(7.8a)
vi \'s w iv iii iii iv o v\
1 L £ LY
L B _/fiyi . T3¥5 L6 S LN Loidi iyi)
z(yi) = k\}éb 120 © 96 ;e BN 1920 |
2a. Whole Station Method
f ylv ffy?il
L o ivi R e
1(¥1) = 10 8
\
(7.8b)
£yt flyy
L v - - 1 1 + 11
2(¥4) 360 ' 120
2b. Modified Whole Station Method
w Lt
= - +
L (%) 12 & "7¢6
(7.8¢)
N
Ly = - + +
2( i) 360 120 120 36

Equation (7.6) and (7.7) together with (7.8a), (7.8b), or (7.8¢c)
are clearly the differential equation which represent exactly the
finite difference equations. As h approaches zero, equation (7.6)

approaches equation (7.1). The solution to equation (7.6), satisfying
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the appropriate boundary conditions, gives an analytical representation
of the numerical finite difference answers. A closed form soclution to
equation (7.6) does not appear feasible since it contains an infinite
number of terms. For a practical problem, however, if the length of
the intervai (a,b) is one unit, h is perhaps 0.1 or 0.0l or even
smaller. This suggests that equation (7.6) can be solved with the

2

use of perturbations with the parameter taken to be h .

Let the solution y, to equation (7.6) be taken in the form

Y.

1

=Y+ thl o0 e . (7.9)
Substituting equation (7.9) into equation (7.6) leads to

LO(YO) - * b2 {%O(Yl) + Ll(Yoi} + =0 {7.10)

subject to

Yo(a) + h2 [%l(a) £+« 20

Yo(b) + 1o {?l(b; + =0

If each order of error term is solved in sequence, the following

series of problems result.

(1) LO(YO) -p, =0 Yo(a) = 0, Yo(b) =0 (7.11)
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(2) LO(Yl) + Ll(YO) =0 Y,(a) = 0, Y,(b) = 0 (7.12)

() - - -

Note that since equation (7.1) is linear Y~ given by
equation (7.11) is in fact the exact solution. From the form of
Yy it is seen that Yl can be interpreted as the first order error
term in the finite difference results. The magnitude of Yl is,
therefore, a measure of the error in the finite difference results as
compared to the exact answer to the problem. A comparison of the

error terms Y. resulting from the different finite difference

1
approximations indicates the relative accuracy of the different
approximations.

While errcrs in the yi are important, errors in numerically
obtained derivatives should also be considered for a thorough error
analysis. Therefore, results were obtained by using the finite
difference answers for approximate second derivatives. The second

difference operator was applied to the difference results followed

by Taylor and perturbation series expansions to yield

n_l__ -
Y172 (Y1-1 - 2 +yi+1)
2 1v iv
=Y"+hY"+T2_(o +h% )+-
or iv
" e n YO
yngo-i-h Y+ (7.13)
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VIII. Application of the Methed to Particular Problems

Problems Studied
Using the method described in the previous section, the error

term Yl in equation (7.9) and the second derivative error term
o

Y; + 75~ in equation (7.13) have been obtained for a series of

problems for the half station and whole station approximations.

Equation (7.1) has been solved with g = 0, p = ~ 1 for the

following values of f(x)

(1) £(x) = ;E for 1SnsS6 15xZ>»2
b 4
(8.1)
subject to the boundary conditions
y(1) = ©
y(2) =0
and
(2) £(x) =1+x" for 1<nss5 0<x=1
(8.2)
subject to the boundary conditions
y(0) =0

y(1) =0
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Physically these problems might correspond to the problem of lateral
deflection of a string having a uniformly distributed lateral load
and a variable tension force f£(x).

For the case where f(x) 1is linear (corresponding to f£(x) = 1,
X, or 1 + x) the results for the half station and two whole station
finite difference approximations are exactly the same. In fact for
f(x) = 1, all three difference answers are the exact answer. For all
other cases, however, the three difference methods lead to different
results. It is useful to compare the results for the case
f(x) = ;3 in detail as a typical example.

X

For f(x) = lg and y(1) = y(2) = 0

X

5
__x 3k 16
Wh=-5 v % -7 (8.3)
and
1. Half Station Method
51 b x 31 2 86
Y, =-T5 X tT -5 *1is (8.4)

2a. Whole Station Method

‘ 187 4 ‘& 3 31 2 26
| Yl = - EEB X + 3 b o 36 x + 555

2b. Modified Whole Station Method

" Y = - %8é‘xu + %E © - %%-xe + %% (8.5)
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A plot of the three error terms Yl over the unit interval is
given in figure 2(b). The exact solution, Y, is given in figure 2(a).
The finite difference solution (7.9) can be obtained to the first two
terms for any desired increment h from figures 2(a) and 2(b).
Solutions were also obtained for the error terms for all of the
remaining functions f(x) noted previously; additional plots of
results and the exact sclution for the case f(x) =1 + x5, are
shown in figures 3(a) and 3(b). Detailed plots of the remaining
solutions are not shown because figures 2(b) and 3(b) serve to
illustrate the character of the results; and overall measure of the
relative errors in the two methods will be shown for all the
solutions obtained.

The error terms for the second derivatives corresponding to the

different methods and for the case f(x) = L are as follows

3

b'e
1. Hslf Station Method

Yiv
" 0 l& 2 _5_1
Yl+_l-2—=-375x—x+75 (8.6)

2a. Whole Station Method

Yiv \
m, o _ 2% .2 21
Y]+ =5=- 75 X + 6x -~ 55 (8.7)

2b. Modified Whole Station Method

Yiv
oy O __ 206 2 i)
5= - s X+ 26x - =5 (8.8)
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A plot of the error in the second derivative for each of the methods
is given in figure 2(d) for this case and in figure 3(d) for the case

f(x) =1 + x3

. The exact solutions Y; are given in figures 2(c)
and 3(c). Again the first two terms of the finite difference
solution (7.13) can be obtained from these plots for the desired
increment h. Results for the remaining functions will be shown
later.

Numerical calculations were also carried out for the deflections
and the second derivatives for the problems cited to determine if the
analytical errors adequately represented the numerical errors. The

data are not included here; however, for h less than about 0.1 all

numerical errors agree with analytical errors to within one percent.

Relative Errors of the Half and Whole Stations Methods
While results such as those given in figures 2 and 3 are usually
sufficient to identify which of the methods is superior for a given
problem, identification of the superior method for specific results is
sometimes difficult. A quantitative measure of the relative accuracy
of the methods can be made by examining the root mean square values of

the errors for the entire soclution, that is

X +1
F f o 2
T, -\I J 1] ax
xO

for the error in deflection and
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iv 2
f\)[o‘("l YO
oo ! 1]
Y, = Jy Y +55 ) ax

for the error in second derivative, where the integration is over the
unit length from a to b. Thus, to assess gquantitatively the relative
merits of the half station and whole station methods for the varilous

problems solved, the ratios

—

Y
l,half

Yl,whole

rﬁ:’

half

1, whole

4

have been calculated for each problem. The results are shown in
figure 4. Ratios for the modified form of the whole station method

compared with the half station method are given in figure 5.

Discussion of Results
The results glven in figures 4 and 5 show that for the problems
studied the error in the deflection resulting from use of the half
station method is less than the error resulting from the use of the
whole station method. The investigation of the accuracy of the

second derivative approximations gives the same result in general..
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The difference between the two methods is generally less in
calculating the second derivatives of deflections than in calculating
the deflections themselves; moreover, differences in the comparative
error from problem to problem are noticeably less with the second
derivatives than with the deflections.

It should be noted that the analytical representation of errors
shows clearly the danger of using numerical data at a single station
or a few points to characterize the error in a problem. A typical
case is shown in figure 2(d) for f(x) = ;3 . If comparisons are made
of the second derivatives near the end xx= 1, the whole station
method appears much more accurate than the half station method;
however, figure 4(b) shows clearly that the average error with the
whole station method is more than twice as great.

Reasons for the superiority of the half station method are not
altogether clear, but may include the symmetry of the matrix of
coefficients in this method. By contrast, the matrix of coefficients
associated with whole stations is not symmetric. Matrix symmetry can
be of great value for many numerical procedures associated with
eigenvalue routines and simultaneous equation solving routines and,
in some cases, is required for an efficient numerical solution of a

large order system.
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IX. CONCLUSION

A procedure was developed to determine an analytical expression
for the discretization error in a finite difference solution to allow
a direct comparison of methods which was independent of the increment,
or mesh size. Using this procedure, a comparison was made of the
accuracy of two different finite difference methods for solving
linear second order boundary value problems.

The methods investigated were a '"half station” method which
corresponds to making the finite difference approximation before
expanding the derivatives of function products and a "whole station"
method which corresponds to expanding such products before making the
approximations. Both of these methods are currently in use. Also
investigated was an alternate.form of the whole station method in
which known derivatives are approximated rather than evaluated
exactly. It was found that, for the same number of stations, the
average error in calculated deflection resulting from use of half
station difference approximations was always less than the error
which resulted from the use of the whole station difference
approximations. In some cases this error is reduced by an order of
magnitude. It was also found that the alternate form of the whole
station method gave the same or better results than the usual whole
station approximation. The investigation of the accuracy of second

derivatives gave similar results in general.
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X. BIBLIOGRAPHY OF SOME PUBLICATIONS ON NUMERICAL METHODS

Numerous publications concerned with the numerical solution of
differential equations and the accuracy of these solutions are found
in the literature. Those publications that are useful in the present
study of the accuracy of central finite difference methods for
approximating the solution of boundary value problems in ordinary
differential equations are listed as references in this paper. In
addition a number of publications which are concerned with the numerical
solution of initial value problems, or problems which can be changed to
this type, and the numerical solution of partial differential equations
are given in the bibliography.

The bibliography is arranged in five sections. Included in the
first section are publications in which the theory of one or more of
the different methods for obtaining numerical solutions is discussed.
In some of these articles, discussions on stability, convergence and
accuracy are included. The second section includes publications in
which the emphasis is placed on error estimates and error bounds. The
third section contains publications which report on the methods used
to obtain approximate solutions of particular physical problems. In
the fourth section are books on methods of numerical analysis. The
last section contains some extensive bibliographies which cover the>

different areas of numerical analysis.
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XIV. APPENDIX A

The following theorem is proved by Collatz (ref. 3, page 44).

Theorem A 1. If the coefficients ajk of an nx n matrix A

satisfy the conditions

1. Sign distribution 85 > 0, SC

2a. The weak row-sum criterion

ajk

n ZOforjzl,E--on
\' e
L
k=1 >0 for at least one

"
e

and 2b. Matrix A is irreducible or instead of 2a and b the
stronger condition

2c. Ordinary row sum criterion

n
Zajk>0 for g=1, - « . n,
k=1

then A is monotonic and det A # 0. Thus a unique solution to

A exists.
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XV. APPENDIX B

The problems named in equations (8.1) and (8.2) were solved
exactly and numerically by the half station, whole station, and
modified whole station methods with the increment h equal to 0.25,
0.125, and 0.0625. The relative error R was calculated for each
method. An example of the table of exact and approximate solutions
and the relative errors at several points is given in table I for
the problem ~{(1 + x2)y') = 1. Rather than include similar tables

for each problem, the root mean square of the relative error given by

ﬁ+Re+"'+R2
2 n

was found for each method. The root mean square errors for each

method for each increment h are given in table II. After examining
tables I and IT it is seen that it is sometimes difficult to

determine which method is best for the desired increment h.
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TABLE IT

ROOT MEAN SQUARES OF THE RELATIVE ERRORS OBTAINED
IN APPROXTMATING THE EQUATION - (f{x)y')' = 1

f(x) = })E
Size of increment, h 1/4 1/8 1/i6
% error using half station method A2 .16 .06
% error using whole station method 1.69 65 24
% error using modified whole station method | 1.29 A6 .16
f(x) = iE
Size of increment, h 1/k4 1/8 1/16
% error using half station method 31 .12 Ol
% error using whole station method 3.82 11.43 .52
% error using modified whole station method LTh T .28
f(x) = 13

X
Size of increment, h 1/4 1/8 1/16
% error using half station method .39 .16 .06
% error using whole station method 5.91 |2.13 7
% error using modified whole station method 3.9% 11.9% .78
f(x) = gj;

X
Size of increment, h 1/4 1/8 1/16
% error using half station method 1.62 N 24
% error using whole station method 7.43 |[2.57 .92
% error using modified whole station method |12.00 |5.52 2.17




f(x) = ig

X
Size of increment, h 1/k 1/8 1/16
% error using half station method 3.40 1.34 .50
% error using whole station method 8.15 2.79 1.00
% error using modified whole station method |28.22 [12.10 4 .69
£(x) = %)-
Size of increment, h 1/% 1/8 1/16
% error using half station method 5.67 2.24 .83
% error using whole station method 9.C1 3.38 1.28
% error using modified whole station method |52.40 [22.11 8.55
flx) =1+ x
Size of increment, h 1/b 1/8 1/16
% error using half station method .90 .35 dk
% error using whole station method .90 .35 Jdk
% error using modified whole staticn method .90 .35 Ak
f(x) =1+ ®
Size of increment, h 1/4 1/8 1/16
% error using half station method 1.16 45 17
% error using whole station method 3.25 1.23 A5
% error using modified whole station method 3.25 1.23 A5
f(x) =1+ x3
Size of increment, h 1/4 1/8 1/16
% error using half station method 1.69 .54 22
% error using whole station method 4 .58 1.64 .58
% error using modified whole station method | 4.54 1.62 .59

TABLE II.- Continued




f(x) =1+ xu

- Size of increment, h /4 | 1/8 1/16
% error using half station method 2.18 .78 .28
% error using whole station method 5.79 2.08 .75
% error using modified whole station method | 4.14% [1.35 A7
flx) =1+ x
Size of increment, h 1/h 1/8 1/16
% error using half station method 2.72 97 .3k
% error using whole station method 7.12 2.56 92
% error using modified whole station method | 3.05 .88 .31

TABLE II.~ Concluded
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(b) FError term in approximation solution independent of increment, h.

Figure 2.- f(x) = 1/x3.
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(d) Error term in approximate solution of second derivative independent
of increment, h.

Figure 2.- Concluded.




{(a) Exact solution.

///'Whole station method
Modified whole station method
Half station method

(b) Frror term in approximate -solution independent of increment, h.

Figure 3.- f(x) = 1 + .



(d)

69

-1.2 o
-.8 I
YY" -
o

-4
r

0
o}
()
~-4 B
-2

Second derivative of exact solution.

//—-Modified whole station method

Whole station method

Half station method

Error term in

Figure 3.- Concluded.

approximate solution of second derivative independent
of increment, h.



*§pOY4aW UOTIBIE STOYM PUB JTBY JI0F 8JOIIS SI8NDS UBSW 300X JO OTIBY -4 2an31g

*9ATIBATIIP puoosg (q)

GKHT gX+ T gX+1 gX+ 1  o¥/1T g¥/1 ¥/1 ¢X/1 g¥/1 X/1=(X)3

0

4z

. . ﬁ.
dg° aroym® :H X
-8° H_”‘mﬂa:,nlm

—0°1
-2’1
= . 71

*uoT1o3TIC (B)

GX+ T X+ 1 g8+ 1 gx+1  o¥/1 ¢X/T ¥/1 ¢X/1T g%/1 X/1=()]

TIIN "I,

ey’ 1 X

—-19°

lw-

-0’1



*gpoY3sW UOTLBLS

STOYM POTIIPOW pus JTBY JOJ SIOXIS SIBNDS UBSW 300X JO O3BY -*G 3Ind1g

*9ATYBATIIP PUODSS (q)

X+ T X+ 1T X+ Tox+1 gX/T g¥/1 vx\ﬁ eX/1 2¥/1 %/1=(¥)]

____:_:.

71

*uoTI09TIaq (®B)

X+ T X+ T X+ gx+1 g%/1 mx\ﬁ “vx\ﬁ eX/1  gX/1  X/1=(x)}

____...J...

0
NQ

aTouA
patITRPOW ¢

T
w &

JTey ¢

aToun

T
w A

patyTpOm ¢ R

e eesmreee

F

Teq

'z



